FOUR-YEAR UNDER GRADUATE

PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

.

.

Programme	B.Sc Chemistry						
Course Title	BASIC INORGANIC AND NANO CHEMISTRY						
Type of Course	MINOR						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
	Concept of atom and	molecule					
Pre-requisites	Constituents of the at	om, Rutherfo	ord's model o	of the atom.			
	Periodic table and cla	ssification of	f elements to	different bloc	ks,		
	Basic knowledge of c	jualitative an	d quantitative	e analysis			
	Titration and use of in	ndicators					
Course Summary	This course is intended	ed to provide	basic knowl	edge in inorga	anic chemistry and		
	nanochemistry. The s	tudent gets a	n understandi	ng of the Bohr	model of the atom		
	and the modern quant	um mechanio	cal model of t	he atom throu	gh the first module		
	of this course. Differe	ent types of c	hemical bond	ding are also in	ncluded in the first		
	module. General pro	perties of the	e atom and th	e variation of	these properties in		
	the periodic table are	also discusse	ed in this cour	se. Basic prin	ciples of analytical		
	chemistry are include	ed in the third	d module of	this course wh	nich includes acid-		
	base titration, redox	titration, cor	nplexometric	titration, and	l mixture analysis.		
	This course also tri	es to explo	re the basic	principles a	nd importance of		
	nanochemistry. To n	naster the lal	ooratory skill	s acid-base ti	tration, and redox		
	titration experiments	are incorpora	ated into this	course structu	re.		

Course Outcomes (CO):

CO	CO Statement	Cognitiv e Level*	Knowledge Category#	Evaluation Tools used
CO1	To Understand the structure of atoms and rules regarding the arrangement of electrons in an atom.	U	C	Instructor- created exams / Quiz /Assignment
CO2	To discuss the chemical bonding, theories of chemical bonding and predict molecular shapes using VSEPR theory	U	F	Instructor- created exams / Quiz /Assignment

CO3	To Comprehend periodic properties,			Instructor-		
	understand laws and the concept of	U	F	created exams		
	the modern periodic table, and its			/ Quiz		
	implications			/Assignment		
CO4	To Master the principle of volumetric			Instructor-		
	analysis, understand the separation	U	С	created exams		
	of cations in qualitative analysis			/ Quiz		
				/Assignment		
CO5	To understand the basics of Nano			Instructor-		
	chemistry & to describe the synthesis	U	F	created exams		
	of nanomaterials, carbon nanotubes,			/ Quiz		
	and their applications,			/Assignment		
CO6	To Perform different titrations and			Lab work		
	execute open-ended experiments	Ap	Р			
	safely and effectively					
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)					
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)					
Metac	cognitive Knowledge (M)					

Module	Unit	Hrs	Mark	
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations, Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
Ι	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ ⁺ , SO ₄ ²⁻	2	
	7	Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	

	8	Molecular Orbital theory: LCAO – Electronic	2	
		configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation of bond order and its applications.(Bond length and bond strength). Comparison of VB and MO theories	2	
		bond strength), Comparison of VB and MO theories Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves,	5	10
	7	X-ray studies of Henry Mosley, Moseley's periodic law - Modern periodic law – Long form periodic table.	2	
Π	10	Periodicity in properties: Atomic and ionic radii, Ionization enthalpy - Electron affinity (electron gain enthalpy) – Electronegativity, valency, Oxidation number (Representative element), metallic and non- metallic character, inert pair effect,	3	
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept – Molar volume - Oxidation and reduction – Equivalent mass.	2	
	12	Methods of expressing concentration: Molality, molarity, normality, ppm, and mole fraction.	2	
	13	Dilution formula, Theory of volumetric analysis – Acid-base, redox, and complexometric titrations :	3	
III	14	acid-base, redox, and complexometric indicators. Double burette method of titration: Principle and advantages.	2	
	15	Principles in the separation of cations in qualitative analysis	2	
	16	Common ion effect and solubility product and its applications in qualitative analysis	2	
	17	Microanalysis and its advantages. Accuracy & Precision (mention only).	2	
		Nano Chemistry	10	20
IV	18	Introduction, Definition of nanomaterials and nanotechnology –Classification of nanomaterials based on dimension with examples for each 0D, 1D, and 2D	2	
1.	19	Synthesis of nanomaterials: top-down processes and Bottom–up processes	2	
	20	Carbon nanotubes, Types of Carbon nanotubes – SWCNT and MWCNT, Synthesis of Carbon nanotubes - electric arc discharge, laser ablation, and chemical vapor deposition.	3	

	21	Important properties of carbon nanotubes and	1	
	21	applications of carbon nanotubes.	•	
	22	Fullerenes, graphene - (basic concept only, no	2	
		classification is required) Applications of	2	
		nanomaterials.		
			20	
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		
		General Instructions		
		For weighing electronic balance must be used. For		
		titrations, double burette titration method should be		
		used. Standard solution must be prepared by the		
		student. Use a safety coat, gloves, shoes and goggles in		
		the laboratory. A minimum of 7 experiments must be		
		done. Out of the seven experiments, one is to be open-		
		ended which can be selected by the teacher		
		Importance of lab safety – Burns, Eye accidents, Cuts,		
		gas poisoning, Electric shocks, Treatment of fires, Precautions and preventive measures.		
		Weighing using electronic balance, Preparation of		
		standard solutions.		
		Neutralization Titrations		
	I	1. Strong acid – strong base.		
	1	2. Strong acid – weak base.		
		3. Weak acid – strong base.		
		Redox Titrations - Permanganometry:		
	II	4. Estimation of oxalic acid.		
		5. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt		
		Redox Titrations - Dichrometry		
		6. Estimation of Fe ₂₊ /FeSO4.7H ₂ O/Mohr's salt		
		using internal indicator.		
		7. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt		
		using external indicator.		
		Redox Titrations - Iodimetry and Iodometry:		
		8. Estimation of iodine.		
V		9. Estimation of copper		
		Open-ended experiments - Suggestions		
		Iodometry: Estimation of chromium.		
	III	Determination of acetic acid content in vinegar by		
		titration with NaOH.		
		Determination of alkali content in antacid tablets by		
		titration with HCl.		
		Determination of available chlorine in bleaching		
		powder.		

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. M. A. Shah, Tokeer Ahmad, *Principles of Nanoscience and Nanotechnology*, Narosa Publishing House, New Delhi, 2010.
- 8. T. Pradeep, *A Textbook of Nanoscience and Nanotechnology*, McGrawhill, New Delhi, 2012.
- 9. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	O3	O4	O5	06							
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6	\checkmark	\checkmark	\checkmark	

FOUR-YEAR UNDER GRADUATE

PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

.

.

Programme	B.Sc Chemistry						
Course Title	BASIC INORGANIC AND BIO-INORGANIC CHEMISTRY						
Type of Course	MINOR						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	3	-	2	75		
Pre-requisites	Concept of atom and Constituents of the at Periodic table and cla Basic knowledge of c Titration and use of i	om, Rutherfonssification o qualitative an	f elements to	different bloc	ks,		
Course Summary	This course is intend nanochemistry. The s and the modern quant of this course. Different module. General pro- the periodic table are chemistry are included base titration, redox This course also tries understand the bioch skills acid-base titrat this course structure.	tudent gets as sum mechanic ent types of c perties of the also discusse ed in the thir titration, con to explain th emistry of ce	n understandi cal model of t chemical bond e atom and th ed in this cour d module of mplexometric e roles of me ertain key ele	ng of the Bohr the atom throu ding are also in e variation of rse. Basic prine this course wh titration, and tal ions in biolo- ments. To ma	model of the atom gh the first module ncluded in the first these properties in ciples of analytical nich includes acid- l mixture analysis. ogical systems and aster the laboratory		

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To Understand the structure of atoms and rules regarding the arrangement of electrons in an atom.	U	С	Instructor- created exams / Quiz
CO2	To discuss the chemical bonding, theories of chemical bonding and predict molecular shapes using VSEPR theory	U	F	Class test /Assignment / Quiz

CO3	To Comprehend periodic properties, understand laws and the concept of the modern periodic table, and its implications	U	F	Class test /Assignment / Quiz	
CO4	To Master the principle of volumetric analysis, understand the separation of cations in qualitative analysis	U	С	Class test /Assignment / Quiz	
CO5	To Explain roles of metal ions in biological systems and understand the biochemistry of certain key elements	U	F	Class test /Assignment / Quiz	
CO6	To Perform different titrations and execute open-ended experiments safely and effectively	Ар	Р	Lab work	
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 				

Module	Unit	Content	Hrs	Marks
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations, Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ ⁺ , SO ₄ ²⁻	2	
	 Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP² (ethylene), SP³ (CH₄), SP³d (PCl₅), SP³d² (SF₆) 		2	
	8	Molecular Orbital theory: LCAO – Electronic configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation	2	

		of bond order and its applications.(Bond length and		
		bond strength), Comparison of VB and MO theories	5	10
	9	Periodic PropertiesName and symbol of elements, Law of triads, octaves,	5	10
		X-ray studies of Henry Mosley, Moseley's periodic law	2	
		- Modern periodic law – Long form periodic table.	-	
II	10	Periodicity in properties: Atomic and ionic radii,		
		Ionization enthalpy - Electron affinity (electron gain	3	
		enthalpy) – Electronegativity, valency, Oxidation		
		number (Representative element), metallic and non-		
		metallic character, inert pair effect,		
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept -	2	
		Molar volume - Oxidation and reduction – Equivalent		
		mass.		
	12	Methods of expressing concentration: Molality,	2	
		molarity, normality, ppm, and mole fraction.		
	13	Dilution formula, Theory of volumetric analysis –	3	
		Acid-base, redox, and complexometric titrations :		
III	14	acid-base, redox, and complexometric indicators.	2	
		Double burette method of titration: Principle and		
	15	advantages.	-	
	15	Principles in the separation of cations in qualitative	2	
	16	analysis	2	
	10	Common ion effect and solubility product and its applications in qualitative analysis –	4	
	17	Microanalysis and its advantages. Accuracy &	2	
	17	Precision (mention only).	2	
		Bio-inorganic Chemistry	10	20
	18	Metal ions in biological systems - Biochemistry of	2	
		iron, Haemoglobin and myoglobin,		
	19	O ₂ and CO ₂ transportation (mechanism not	2	
		required) - Chlorophyll and photosynthesis		
IV		(mechanism not expected)		
	20	Elementary idea of structure and mechanism of	2	
		action of sodium potassium pump		
	21	Biochemistry of zinc and cobalt. Toxicity of metal ions		
		(Pb, Hg and As).	2	
	22	Anticancer drugs: <i>Cis</i> -platin, oxaliplatin,– Structure and	•	
		significance.	2	
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		

		General Instructions	
		For weighing electronic balance must be used. For	
		titrations, double burette titration method should be	
		used. Standard solution must be prepared by the	
		student. Use a safety coat, gloves, shoes and goggles in	
		the laboratory. A minimum of 7 experiments must be	
		done. Out of the seven experiments, one is to be open-	
		ended which can be selected by the teacher	
		Importance of lab safety – Burns, Eye accidents, Cuts,	
		gas poisoning, Electric shocks, Treatment of fires,	
		Precautions and preventive measures.	
		Weighing using electronic balance, Preparation of standard solutions.	
		Neutralization Titrations	
	_	1. Strong acid – strong base.	
	Ι	 Strong acid – weak base. Weak acid – strong base. 	
		5. Weak actu – strolig base.	
		Redox Titrations - Permanganometry:	
		4. Estimation of oxalic acid.	
	тт	5. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt	
V	II		
		Redox Titrations - Dichrometry	
		6. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt	
		using internal indicator.	
		7. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt	
		using external indicator.	
		Redox Titrations - Iodimetry and Iodometry:	
		8. Estimation of iodine.	
		9. Estimation of copper	
		Open-ended experiments - Suggestions	
		Iodometry: Estimation of chromium.	
	III	Determination of acetic acid content in vinegar by	
		titration with NaOH.	
		Determination of alkali content in antacid tablets by	
		titration with HCl.	
		Determination of available chlorine in bleaching	
		powder.	

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, Advanced Inorganic Chemistry, Vol. 1, 5th Edn., S. Chand and Sons, New

Delhi, 2012.

- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. G. L. Meissler, D. A. Tarr, Inorganic Chemistry, 3rd Edn. Pearson Education, 2004.
- 8. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, *Inorganic Chemistry*, 5th Edn., Pearson, 2009.
- 9. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

	PSO	PSO	PSO	PSO	PSO	PSO	PO						
	1	2	3	4	5	6	1	2	3	4	5	6	7
CO 1	2				2		1				1		
CO 2	2				2		1				1		
CO 3	1				2		1				1		
CO 4	1		1		2		1				1		
CO 5	1				2		1				1		
CO 6			2		1		1		1		2		

Mapping of COs with PSOs and POs:

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6		√	√	

FOUR-YEAR UNDER GRADUATE

PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

.

.

Programme	B.Sc Chemistry						
Course Title	BASIC INORGANIC CHEMISTRY AND METALLURGY						
Type of Course	MINOR						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
Pre-requisites Course Summary	Concept of atom and Constituents of the at Periodic table and cla Basic knowledge of o Titration and use of in This course is intended nanochemistry. The s and the modern quant of this course. Differed module. General pro the periodic table are chemistry are included base titration, redox This course also tries metals and alloy form and redox titration ex	om, Rutherfor assification or qualitative an <u>ndicators</u> ed to provide tudent gets an um mechanic ent types of c perties of the also discusse ed in the thirr titration, cor to explore prination. To m	f elements to d quantitative e basic knowl n understandi cal model of t chemical bond e atom and th ed in this courd d module of nplexometric rocesses in m aster the lab	different block e analysis edge in inorga ng of the Bohr the atom throug ding are also in e variation of rse. Basic princ this course wh titration, and tetallurgy inclu- oratory skills a	anic chemistry and model of the atom gh the first module ncluded in the first these properties in ciples of analytical nich includes acid- mixture analysis. uding extraction of acid-base titration,		

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
C01	To Understand the structure of atoms and rules regarding the arrangement of electrons in an atom.	U	С	Instructor- created exams / Quiz
CO2	To discuss the chemical bonding, theories of chemical bonding and predict molecular shapes using VSEPR theory	U	F	Class test /Assignment / Quiz

CO3	To Comprehend periodic properties, understand laws and the concept of the modern periodic table, and its implications	U	F	Class test /Assignment / Quiz	
CO4	To Master the principle of volumetric analysis, understand the separation of cations in qualitative analysis	U	С	Class test /Assignment / Quiz	
CO5	To Comprehend the process in metallurgy including extraction of metals and alloy formation	U	F	Class test /Assignment / Quiz	
CO6	To Perform different titrations and execute open-ended experiments safely and effectively	Ap	Р	Lab work	
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Module	Unit	Content	Hrs	Marks
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations, Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ ⁺ , SO ₄ ²⁻	2	
	7	Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	
	8	Molecular Orbital theory: LCAO – Electronic configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation of	2	

		bond order and its applications.(Bond length and bond		
		strength), Comparison of VB and MO theories		
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves, X-		
		ray studies of Henrry Mosley, Mosleys periodic law -	2	
		Modern periodic law – Long form periodic table.		
II	10	Periodicity in properties: Atomic and ionic radii, Ionization		
		enthalpy - Electron affinity (electron gain enthalpy) –	3	
		Electronegativity, valency, Oxidation number		
		(Representative element), metallic and non-metallic		
		character, inert pair effect, Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept – Molar	2	54
	11	volume - Oxidation and reduction – Equivalent mass.		
	12	Methods of expressing concentration: Molality,	2	
		molarity, normality, ppm, and mole fraction.		
	13	Dilution formula, Theory of volumetric analysis – Acid-	3	
		base, redox, and complexometric titrations :		
III	14	acid-base, redox, and complexometric indicators.	2	
		Double burette method of titration: Principle and		
	15	advantages. Principles in the separation of cations in qualitative	2	
	15	analysis	2	
	16	Common ion effect and solubility product and its	2	
		applications in qualitative analysis –		
	17	Microanalysis and its advantages. Accuracy & Precision	2	
		(mention only).		
		Metallurgy	10	20
	18	Ores and minerals, Concentration of ores – Calcination and	2	
		roasting – Reduction to free metal.		
	19	Electrometallurgy – Hydrometallurgy. Refining of metals:	2	
		Electrolytic refining, zone refining		
IV	20	Extractive metallurgy of Al, Fe	2	
	21	Alloys: Definition – Composition and uses of German		
		silver, brass, bronze, gunmetal and alnico. Steel: Open	2	
		hearth process (brief description only)		
	22	Classification of steel – Composition and uses of stainless		
		steels, and applications of industrially important stainless	2	
		steel types- (AISI Grade mention only)		
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		

		General Instructions	
		For weighing electronic balance must be used. For	
		titrations, double burette titration method should be used.	
		Standard solution must be prepared by the student. Use a	
		safety coat, gloves, shoes and goggles in the laboratory. A	
		minimum of 7 experiments must be done. Out of the seven	
		experiments, one is to be open-ended which can be	
-		selected by the teacher	
		Importance of lab safety – Burns, Eye accidents, Cuts, gas	
		poisoning, Electric shocks, Treatment of fires, Precautions	
		and preventive measures.	
		Weighing using electronic balance, Preparation of	
-		standard solutions.	
		Neutralization Titrations	
		1. Strong acid – strong base.	
	Ι	 Strong acid – weak base. Wash said – strong base. 	
-		3. Weak acid – strong base.	
		Redox Titrations - Permanganometry:	
		4. Estimation of oxalic acid.	
v	II	5. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt	
v		Redox Titrations - Dichrometry	
		6. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt using	
		internal indicator.	
		7. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt using	
		external indicator.	
		Redox Titrations - Iodimetry and Iodometry:	
		8. Estimation of iodine.	
		9. Estimation of copper	
		Open-ended experiments - Suggestions	
		Iodometry: Estimation of chromium.	
	III	Determination of acetic acid content in vinegar by titration	
		with NaOH.	
		Determination of alkali content in antacid tablets by	
		titration with HCl.	
		Determination of available chlorine in bleaching powder.	

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.

- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. A. Cottrel, An introduction to metallurgy, 2nd Edn., University press, 1990.
- 8. Jonathan Beddoes, J. Gordon Parr, *Introduction to stainless steels*, 3rd Edn., ASM International, 1999.
- 9. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

Mapping of COs with PSOs and POs

	PSO	PSO	PSO	PSO	PSO	PSO	PO	PO	РО	PO	PO	РО	PO
	1	2	3	4	5	6	1	2	3	4	5	6	7
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Correlation Levels :

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		✓
CO3	\checkmark	\checkmark		✓
CO4	1	1		1
CO5	\checkmark	\checkmark		✓
CO6		1	1	

Mapping of COs to Assessment Rubrics

FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B. Sc. Chemist	B. Sc. Chemistry							
Course Title	ENVIRONMENTAL CHEMISTRY								
Type of Course	MDC								
Semester	Ι								
Academic	100-199	100-199							
Level									
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours				
		week	per week	per week					
	3	3	-	-	45				
Pre-requisites	What is Enviro	onment.							
	Basic idea of e	nvironmental p	ollution.						
Course	This course ensures that the students acquire a profound knowledge and								
Summary	understanding on environmental pollution and the necessity of controlling								
	environmental	pollution.							

<u>Course Outcomes (CO):</u>

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Acquire the knowledge on ecosystem.	U	С	Instructor- created exams / Quiz
CO2	Recall the technical/scientific terms involved in pollution.	U	С	Instructor- created exams / Quiz
CO3	Recognize different types of toxic substances that cause environmental pollution.	U	С	Instructor- created exams / Assignment
CO4	Understand the effects of environmental pollution.	U	С	Seminar Presentation / Viva
CO5	Understand various pollution control measures.	U	С	Instructor- created exams / Quiz
CO6	Discuss and report local and global environmental issues based on the knowledge gained throughout the course.	Ap	Р	Group discussion and Seminar presentation/Viv a

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Module	Unit	Hrs	Mark		
		Introduction to Environmental Chemistry	9	18	
Ι	1	Environmental segments-Atmosphere, Hydrosphere, Lithosphere,	2		
		Biosphere			
	2	Interaction between different environmental spheres Concept of	2		
		ecosystem, abiotic and biotic components			
	3	Composition of Air, Water and Soil	2		
	4 Environmental pollution – Concepts and definition – Pollutant,				
	contaminant, receptor and sink				
	5	Classification of pollutants – Global, regional, local, persistent and non-	1		
		persistent pollutants.			
	6	Types of pollution	1		
II		Air Pollution	9	18	
	7	Tropospheric pollution – Gaseous air pollutants – Hydrocarbons,	2		
		oxides of sulphur, nitrogen and carbon (Elementary idea only)			
	8	Global warming, green house effect, acid rain	1		
	9	Particulates – Smog: London smog and photochemical smog –	2		
	10	stratospheric pollution - depletion of ozone layer, chlorofluorocarbons -	2		
		Automobile pollution.			
	11	Control of air pollution	2		
III		Water Pollution	10	20	
111	12	Water Tonution	1	20	
	12	Impurities in water – cause of pollution – natural and anthropogenic –	1		
		Marine water pollution – Underground water pollution.			
	13		2		
		Source of water pollution – Industrial waste, Municipal waste,			
		Agricultural waste, Radioactive waste, Petroleum, Pharmaceutical,			
		heavy metal, pesticides, soaps and detergents.			
	14	Types of water pollutants: Biological agents, physical agents and	2		
		chemical agents – Eutrophication- biomagnification and			
		bioaccumulation.			
	15	Water quality parameters: DO, BOD, COD, alkalianity, hardness,	3		
		chloride, fluoride and nitrate. Toxic metals in water and their effects:			
		Cadmium, lead and oil pollution in water.			
		cummun, read and on ponation in water.			
	16		2		
	10	Water pollution control methods	_		

IV		Soil, Thermal, and Radioactive Pollutions	8	14
	18	Soil pollution: Sources by industrial and urban wastes. Non-degradable, degradable and biodegradable wastes. Hazardous waste.	2	
	19	Pollution due to plastics, pesticides, biomedical waste and <i>e-waste</i> (source, effects and control measures) – Control of soil pollution - Solid waste Management – Open dumping, Landfilling, Incineration, Reuse, reclamation, recycle, composting.	3	
	20	Thermal pollution – definition, sources, harmful effects and prevention.	1	
	21	Radioactive pollution (source, effects and control measures) – Hiroshima, Nagasaki and Chernobyl accidents (brief study).	2	
V		Open Ended Module: Environmental issues	9	
	1	Environment and society Pollution case studies: Chernobyl disaster, Bhopal tragedy, Endosulfan disaster in Kerala (brief study) etc.		

- 1. A. K. De, *Environmental Chemistry*, 6thEdn., New Age International.
- 2. A. K. Ahluwalia, *Environmental Chemistry*, The Energy and Resources Institute, 2017.
- 3. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt Ltd, 2010.

4. S.K. Banergy, *Environmental Chemistry*, 2nd Edn., Prentice-Hall of India Pvt. Ltd., New Delhi, 2005.

5. V.N. Bashkin, *Environmental Chemistry: Asian Lessons*, Springer Science & Business Media, 2003.

6. S.E. Manahan, *Environmental Chemistry*, 8th Edn., CRC Press, Florida, 2004.

7.Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt Ltd, 2010.

8. J. M. H. Selendy, *Water and Sanitation-Related Diseases and the Changing Environment*, John Wiley & Sons, Inc.

9. P. K. Goel, Water Pollution: Causes, Effects and Control, New Age International, 2006.

10. V. N. Bashkin, *Environmental Chemistry: Asian Lessons*, Springer Science & Business Media, 2003.

11.Pallavi Saxena, Vaishali Naik, Air Pollution: Sources, Impacts and Controls, CAB International, 2018.

- 12. Gabi Mocatta(2015) Environmental Journalism, Deakin University Open School of Journalism.
- 13. D. S. Poornananda (2022), Environmental Journalism: Reporting on Environmental Concerns and Climate Change in India, SAGE Publishing India'
- 14. Frome, Michael. (1998) Green Ink: An Introduction to Environmental Journalism. Salt Lake City: University of Utah Press.
- 15. Sachsman, D. B. & Valenti, J. M. (2020). Routledge handbook of environmental *journalism*.New York, NY: Routledge.
- 16. Blum, D., Henig, R., Knudson, M., (2005). "<u>A Field Guide for Science Writers</u>." Oxford University Press; 2nd edition.
- 17. Hansen, Anders. (2010) Environment, Media and Communication. London: Routledge

map	ping of	Mapping of COS with FSOS and FOS:											
	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	-	-	-	1	1	1			2	1		
CO 2	1		-	-	1	1	1			1	1	1	1
CO 3	-	-		1	2	2	1			2	2	1	
CO 4	-	-			1	2	1			1	1	1	1
CO 5	-		-	1	2	2	1			1		1	1
CO 6	-	-	-	1	2	2	1			1	1	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation		
-	Nil		
1	Slightly / Low		
2	Moderate /		
	Medium		
3	Substantial /		
	High		

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent/viva	Quiz/seminar/ Goupdiscussio n	End Semester Examinations
CO 1	\checkmark		\checkmark	\checkmark
CO 2	\checkmark		\checkmark	\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark	\checkmark	\checkmark
CO 5	\checkmark		\checkmark	\checkmark
CO 6		\checkmark	\checkmark	

Mapping of COs to Assessment Rubrics :